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GoalsGoals
 ObjectivelyObjectively measure the performance of a team  measure the performance of a team 
              relative to the schedule facedrelative to the schedule faced
 Correct for disparate schedules (esp. college sports)Correct for disparate schedules (esp. college sports)
 Predictive vs. RetrodictivePredictive vs. Retrodictive
              Wins, scores, date, stats, homefield, preseason, other ?Wins, scores, date, stats, homefield, preseason, other ?
 Seed playoffsSeed playoffs
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Georgia 26   Tennessee 24

Auburn 24  Georgia 17

Syracuse 31  Auburn 14

Georgia Tech 13  Syracuse 7

Virginia 39  Georgia Tech 38

Wisconsin 26  Virginia 17

Michigan St 42  Wisconsin 28

Minnesota 28  Michigan St 19

Toledo 38  Minnesota 7

Ball St 24  Toledo 20

N. Iowa 42  Ball St 39

Illinois St 42  N. Iowa 14

SW Texas 20  Illinois St 13

Nicholls St  33  SW Texas 14

Grambling 37  Nicholls St 28

Alabama St 45  Grambling 38

Alcorn St 20  Alabama St 17

Fort Valley 31  Alcorn St 16

Tuskegee 35  Fort Valley 28

Morehouse 14  Tuskegee 3

Benedict 20  Morehouse 0

Lane 24  Benedict 22

Miles 16  Lane 15

W. Alabama 35  Miles 12

Belhaven 21  W. Alabama 0

Pikeville 30  Belhaven 21

Cumberland KY 34  Pikeville 29

Bethel TN 40  Cumberland KY 27

Westminster MO 24  Bethel TN 21

Greenville 40  Westminster MO 14

Eureka 35  Greenville 28

Prediction: Eureka by 339 points over Tennessee
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ChallengesChallenges
 There is no property of transitivity!There is no property of transitivity!
 Disparate schedulesDisparate schedules
      ““Mt. Union Syndrome”Mt. Union Syndrome”
          Separate DivisionsSeparate Divisions
 Strength vs. Performance vs. ResultsStrength vs. Performance vs. Results
          Environment Environment 
                        (venue, homefield, weather, day/night, crowd)(venue, homefield, weather, day/night, crowd)
          Teams don’t always play at full potential Teams don’t always play at full potential 
                        (injury, unfavorable matchups, intangible, psychological)(injury, unfavorable matchups, intangible, psychological)
          The score isn’t always a good indicator The score isn’t always a good indicator 
                        (coaching philosophy, chaos “bounce of ball”)(coaching philosophy, chaos “bounce of ball”)
 Lack of dataLack of data
      ConnectednessConnectedness

 Undefeated / winless teamsUndefeated / winless teams
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Types of RatingsTypes of Ratings

 Standings / WL% / PointsStandings / WL% / Points
 Polls  Polls  Tabulated votes, subjective, time sensitive, Tabulated votes, subjective, time sensitive, 

                                    no corrections, incomplete analysisno corrections, incomplete analysis

 Formula (RPI)Formula (RPI)
 Update (Elo chess)Update (Elo chess)
 Least SquaresLeast Squares
 MLEMLE
 Matrix (Markov)Matrix (Markov)
 Other (Neural nets)Other (Neural nets)
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Bowl Championship Series (BCS)Bowl Championship Series (BCS)

 PollsPolls
 ComputersComputers
 ScheduleSchedule
 LossesLosses
 Quality WinsQuality Wins

} redundant
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Schedule RatingsSchedule Ratings
 Average rating of opponents (corrected for homefield)Average rating of opponents (corrected for homefield)
 A good team prefers a less distributed schedule; A good team prefers a less distributed schedule; 
        a bad team prefers a more distributed schedule.a bad team prefers a more distributed schedule.
        
        For example (Florida, Vanderbilt) vs. (Alabama, Arkansas)For example (Florida, Vanderbilt) vs. (Alabama, Arkansas)
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BCS ComputersBCS Computers

 Anderson / Hester  Anderson / Hester  formulaformula
 Billingsley            Billingsley            updateupdate
 Colley                  Colley                  matrixmatrix
 Massey              Massey              MLE (Gaussian)MLE (Gaussian)
 Matthews             Matthews             matrixmatrix
 Rothman              Rothman              MLE (logistic)MLE (logistic)
 Sagarin                Sagarin                MLE (logistic)MLE (logistic)
 Wolfe / BakerWolfe / Baker least squares     least squares     
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Least Squares ModelLeast Squares Model

Assume the expected outcome bk of a game is a linear function 
of the rating vector x.

Example: define bk = si – sj = margin of victory (MOV) for team i over team j
              
              suppose x = r contains the ratings for each team
        



14

Least Squares ModelLeast Squares Model

Suppose there are m observed game results.  Let

Assume there are n teams and rating parameters.

We find x to solve the least squares problem:
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Rank DeficiencyRank Deficiency

If ker(A) is nontrivial, then there is no unique
   solution to the least squares problem.  

• Additive scale invariance of the model
       Impose additional constraints, such as

•  The schedule matrix is not connectedThe schedule matrix is not connected
              Compute the minimal norm solution (SVD).Compute the minimal norm solution (SVD).
              Impose the constraint on each “group.”Impose the constraint on each “group.”
              Solve the problem for each group separately.Solve the problem for each group separately.
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LS ExampleLS Example
We will use four rating parameters per team

• offense
• defense
• home advantage offense
• home advantage defense

Note that there might not be enough data to warrant such a
   complex model!

There are two observations per game: si and sj
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LS ExampleLS Example

Collecting all of the observations, we have the coefficient matrix:

We combine and rearrange the equations with the help of the matrices

With x = P-1y, the least squares problem becomes
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LS ExampleLS Example
The new coefficient matrix

has the property that the first two blocks of columns are orthogonal
to the last two blocks.  Therefore the problem decouples into:

where

In fact, since y = Px,

We interpret this as first solving for the total rating y1, then 
determining the offense and defense parts from y2.
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More LS Model FeaturesMore LS Model Features

 Preseason ratingsPreseason ratings

 WeightingWeighting
        
 Choice of GOFChoice of GOF

or

• Provide reasonable ratings despite lack of data
• Insure unique solution to least squares problem
• Pull team values toward the average.

Augment observation matrix with

• WIF

• BOMB
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LS NotesLS Notes
Once necessary constraints, preseason observations, weightings,
and change of variables have been applied, the least squares problem: 

should be full rank, and may be solved by the standard methods.

Note that the least squares solution may be interpreted as
   a MLE (statistical linear regression).

Also, it can be shown that the LS solution satisfies the
   expected = actual condition for the GOF.

Any linearly scaled ratings may be divided into off /def using LS.
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Maximum Likelihood Estimator (MLE) MethodMaximum Likelihood Estimator (MLE) Method

 Optimization ProblemOptimization Problem
        Choose ratings to maximize the probability of Choose ratings to maximize the probability of 

              reproducing the observed resultsreproducing the observed results

 Game Outcome FunctionGame Outcome Function
        Measures the result of a particular gameMeasures the result of a particular game

 Game Likelihood FunctionGame Likelihood Function
        The probability of a given result given a set of ratingsThe probability of a given result given a set of ratings
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Game Outcome FunctionGame Outcome Function

 Win Indicator FunctionWin Indicator Function

 Score RatioScore Ratio

 RothmanRothman

 Sagarin ?Sagarin ?

 MasseyMassey

Note: g could depend on other input, such as stats, or even ratings
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GOF ValuesGOF Values
ssii ssjj WIFWIF SRSR RothRoth SagSag MasMas

2121 2020       11 .6078.6078 .7650.7650 .6133.6133 .5296.5296

2727 2020       11 .6491.6491 .8492.8492 .7135.7135 .6924.6924

3030 1414       11 .7407.7407 .9361.9361 .8173.8173 .8786.8786

4242 77       11 .8814.8814 .9926.9926 .9293.9293 .9936.9936

4949 77       11 .8939.8939 .9968.9968 .9502.9502 .9981.9981

1010 00       11       11 .8843.8843 .7534.7534 .8548.8548

5252 4242       11 .5962.5962 .8843.8843 .7534.7534 .7270.7270
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GOF BiasGOF Bias

Suppose that g(z) satisfies the following properties:

g(z) is monotone increasing, , and

Theorem:

Let f(z) be the p.d.f. for the z and suppose

Then the expected value of g cannot exceed the probability
   that the favorite will win.  Furthermore, equality occurs
   if and only if g(z) is the win indicator function.

Let z represent the measured performance of the favored team.
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ProofProof

Clearly equality holds if and only if g(z) = 0 for z < 0.
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Game Likelihood FunctionsGame Likelihood Functions

 GaussianGaussian

 LogisticLogistic

  Equivalent toEquivalent to  

 ArctanArctan

The variable z is a typically a linear function of the rating parameters.

or
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MLE FunctionMLE Function

Define the MLE function to be the weighted product
of all game probabilities:

For a particular game k, model the probability of the observed 
result given a set of ratings, x, as:

For computational purposes, we minimize

where

Example: 0.80.6 0.20.4
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MLE Optimization (Logistic Model)MLE Optimization (Logistic Model)

In the logistic model, we have that:           

Taking the partial derivatives with respect to a rating parameter xi

Therefore the derivatives reduce to:

If we choose zk so that the coefficient of xi is always positive, setting
the derivative to zero yields the (expected = actual) property:

The second derivatives are also easy to calculate:
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MLE IssuesMLE Issues

 Non-uniquenessNon-uniqueness
 Ideally, wins help and losses hurtIdeally, wins help and losses hurt
 Undefeated / Winless TeamsUndefeated / Winless Teams

 Update ratings based on linearizationUpdate ratings based on linearization
        (time dependent, n large)(time dependent, n large)

• Use a linear approximation to f

• Don’t use the WIF.

• Use prior distribution (Bayesian)
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Ratings on the WebRatings on the Web
 Massey Ratings Massey Ratings 
        http://www.masseyratings.comhttp://www.masseyratings.com  
 College Football Rankings College Football Rankings 

http://www.cae.wisc.edu/~dwilson/rsfc/rate/index.htmlhttp://www.cae.wisc.edu/~dwilson/rsfc/rate/index.html
 Bowl Championship SeriesBowl Championship Series
        http://www.collegebcs.comhttp://www.collegebcs.com

http://www.masseyratings.com/
http://www.cae.wisc.edu/~dwilson/rsfc/rate/index.html
http://www.collegebcs.com/
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